Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Pharmacol Res Perspect ; 12(3): e1197, 2024 Jun.
Article En | MEDLINE | ID: mdl-38644590

Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.


Cholesterol , Cholic Acid , Cytochrome P-450 CYP3A , Liver , Microsomes, Liver , Triazolam , Cholic Acid/metabolism , Animals , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Microsomes, Liver/metabolism , Cholesterol/metabolism , Cholesterol/blood , Mice , Liver/metabolism , Liver/drug effects , Male , Triazolam/pharmacokinetics , Triazolam/metabolism , Humans , Mice, Transgenic , Hydroxylation
2.
Drug Metab Dispos ; 51(2): 174-182, 2023 02.
Article En | MEDLINE | ID: mdl-36379710

Knockout (KO) of mouse Cyp3a genes increases the expression of hepatic CYP2C enzymes, which can metabolize triazolam, a typical substrate of human CYP3A. There is still marked formation of 1'-hydroxytriazolam in Cyp3a-KO (3aKO) mice after triazolam dosing. Here, we generated a new model of humanized CYP3A (hCYP3A) mice with a double-KO background of Cyp3a and Cyp2c genes (2c3aKO), and we examined the metabolic profiles of triazolam in wild-type (WT), 2c3aKO, and hCYP3A/2c3aKO mice in vitro and in vivo In vitro studies using liver microsomes showed that the formation of 1'-hydroxytriazolam in 2c3aKO mice was less than 8% of that in WT mice. The formation rate of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was eightfold higher than that in 2c3aKO mice. In vivo studies showed that area under the curve (AUC) of 1'-hydroxytriazolam in 2c3aKO mice was less than 3% of that in WT mice. The AUC of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was sixfold higher than that in 2c3aKO mice. These results showed that formation of 1'-hydroxytriazolam was significantly decreased in 2c3aKO mice. Metabolic functions of human CYP3A enzymes were distinctly found in hCYP3A mice with the 2c3aKO background. Moreover, hCYP3A/2c3aKO mice treated with clobazam showed human CYP3A-mediated formation of desmethylclobazam and prolonged elimination of desmethylclobazam, which is found in poor metabolizers of CYP2C19. The novel hCYP3A mouse model without mouse Cyp2c and Cyp3a genes (hCYP3A/2c3aKO) is expected to be useful to evaluate human CYP3A-mediated metabolism in vivo SIGNIFICANT STATEMENT: Humanized CYP3A (hCYP3A/2c3aKO) mice with a background of double knockout (KO) for mouse Cyp2c and Cyp3a genes were generated. Although CYP2C enzymes played a compensatory role in the metabolism of triazolam to 1'-hydroxytriazolam in the previous hCYP3A/3aKO mice with Cyp2c genes, the novel hCYP3A/2c3aKO mice clearly showed functions of human CYP3A enzymes introduced by chromosome engineering technology.


Triazolam , Humans , Mice , Animals , Triazolam/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Clobazam , Mice, Knockout , Microsomes, Liver/metabolism
3.
Pharmacogenet Genomics ; 32(8): 288-292, 2022 10 01.
Article En | MEDLINE | ID: mdl-35997049

P-glycoprotein, the encoded product of the MDR1 / ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo . The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 gene single nucleotide polymorphism on the expression and function of P-glycoprotein at the blood-brain barrier.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mutation , Polymorphism, Single Nucleotide
4.
Cell Metab ; 34(4): 564-580.e8, 2022 04 05.
Article En | MEDLINE | ID: mdl-35385705

Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.


Metabolic Syndrome , RNA Stability , Animals , Eating , Energy Metabolism/genetics , Fibroblast Growth Factors/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Humans , Liver/metabolism , Metabolic Syndrome/metabolism , Mice , RNA Stability/genetics , RNA Stability/physiology , Ribonucleases/metabolism
5.
Xenobiotica ; 51(7): 764-770, 2021 Jul.
Article En | MEDLINE | ID: mdl-34013847

It is important to predict drug-drug interactions via inhibition of intestinal cytochrome P450 3A (CYP3A) which is a determinant of bioavailability of orally administered CYP3A substrates. However, inhibitory effects of macrolide antibiotics on CYP3A-mediated metabolism are not entirely identical between humans and rodents.We investigated the effects of macrolide antibiotics, clarithromycin and erythromycin, on in vitro and in vivo metabolism of triazolam, a CYP3A substrate, in CYP3A-humanised mice generated by using a mouse artificial chromosome vector carrying a human CYP3A gene.Metabolic activities of triazolam were inhibited by macrolide antibiotics in liver and intestine microsomes of CYP3A-humanised mice.The area under the plasma concentration-time curve ratios of 4-hydroxytriazolam to triazolam after oral dosing of triazolam were significantly decreased by multiple administration of macrolide antibiotics. The plasma concentrations ratios of α-hydroxytriazolam and 4-hydroxytriazolam to triazolam in portal blood were significantly decreased by multiple administration of clarithromycin in CYP3A-humanised mice.These results suggest that intestinal CYP3A activity was inhibited by macrolide antibiotics in CYP3A-humanised mice in vitro and in vivo. The plasma concentrations of triazolam and its metabolites in the portal blood of CYP3A-humanised mice would be useful for direct evaluation of intestinal CYP3A-mediated drug-drug interactions.


Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Anti-Bacterial Agents/pharmacology , Cytochrome P-450 CYP3A/genetics , Drug Interactions , Humans , Intestines , Macrolides/pharmacology , Microsomes, Liver
6.
Mol Pharmacol ; 96(5): 600-608, 2019 11.
Article En | MEDLINE | ID: mdl-31455676

Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.


Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Intestine, Small/metabolism , Liver/metabolism , Portal Vein/metabolism , Pregnane X Receptor/biosynthesis , Animals , Enzyme Induction/drug effects , Enzyme Induction/physiology , Humans , Intestine, Small/drug effects , Liver/drug effects , Mass Spectrometry/methods , Mice , Mice, Knockout , Mice, Transgenic , Portal Vein/drug effects
7.
Xenobiotica ; 49(11): 1303-1310, 2019 Nov.
Article En | MEDLINE | ID: mdl-30561249

1. To investigate cytochrome P450 3A (CYP3A)-mediated metabolism in vivo, plasma concentrations of triazolam (TRZ) are often monitored as a CYP3A marker in CYP3A-humanised mice. However, it has not been determined whether plasma concentrations of TRZ after intravenous administration can reflect hepatic CYP3A activity in CYP3A-humanised mice. 2. Firstly, we investigated the pharmacokinetics of TRZ in wild-type and Cyp3a-knockout (Cyp3a-KO) mice. Plasma concentration profiles of TRZ and α-hydroxy (OH) TRZ were very similar in wild-type and Cyp3a-KO mice. On the other hand, AUC of 4-OH TRZ in Cyp3a-KO mice was significantly lower than that in wild-type mice. Pregnenolone 16α-carbonitrile (PCN) decreased the areas under the plasma concentration-time curves (AUCs) of TRZ and α-OH TRZ in both groups. There was no significant effect of PCN on AUC of 4-OH TRZ in Cyp3a-KO mice. 3. Next, we verified that AUC of 4-OH TRZ in CYP3A-humanised mice was higher than that in Cyp3a-KO mice, although the difference was not significant. 4. In conclusion, plasma concentrations of 4-OH TRZ, but not those of TRZ and α-OH TRZ, might reflect hepatic CYP3A activity in mice in vivo. These results provide important insights for in vivo studies using a CYP3A-humanised model.


Cytochrome P-450 CYP3A/metabolism , Triazolam/pharmacokinetics , Animals , Area Under Curve , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Enzymologic , Humans , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred ICR , Mice, Knockout , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Pregnenolone Carbonitrile/blood , Pregnenolone Carbonitrile/pharmacokinetics , Triazolam/blood , Triazolam/metabolism
8.
Drug Metab Dispos ; 46(11): 1756-1766, 2018 11.
Article En | MEDLINE | ID: mdl-29777024

P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the Mdr1a/1b genes in rodents, is expressed in numerous tissues and performs as an efflux pump to limit the distribution and absorption of many drugs. Owing to species differences of P-gp between humans and rodents, it is difficult to predict the impact of P-gp on pharmacokinetics and the tissue distribution of P-gp substrates in humans from the results of animal experiments. Therefore, we generated a novel P-gp humanized mouse model by using a mouse artificial chromosome (MAC) vector [designated human MDR1-MAC (hMDR1-MAC) mice]. The results showed that hMDR1 mRNA was expressed in various tissues of hMDR1-MAC mice. Furthermore, the expression of human P-gp was detected in the brain capillary fraction and plasma membrane fraction of intestinal epithelial cells isolated from hMDR1-MAC mice, although the expression levels of intestinal P-gp were extremely low. Thus, we evaluated the function of human P-gp at the blood-brain barrier of hMDR1-MAC mice. The brain-to-plasma ratios of P-gp substrates in hMDR1-MAC mice were much lower than those in Mdr1a/1b-knockout mice, and the brain-to-plasma ratio of paclitaxel was significantly increased by pretreatment with a P-gp inhibitor in hMDR1-MAC mice. These results indicated that the hMDR1-MAC mice are the first P-gp humanized mice expressing functional human P-gp at the blood-brain barrier. This mouse is a promising model with which to evaluate species differences of P-gp between humans and mice in vivo and to estimate the brain distribution of drugs in humans while taking into account species differences of P-gp.


ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Chromosomes/metabolism , Pharmaceutical Preparations/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Cell Line , Chickens/metabolism , Female , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Tissue Distribution/physiology
...